

How to make reliable decisions from data:
The ExtremeXP paradigm

Iyad Alshabani

CEO, R&D Investigator, Manager lyad.alshabani@bitsparkles.com

BitSparkles — Driving Digital Transformation & Innovation

Who We Are

- SME
- Digital Transformation
- Consultancy

How We Create Value

- From Data
- Research and Innovation Management
- Technology transfer
- Open innovation
- Spin-off research results

What We Do

Digital Transformation

Al Process & Infrastructure (AlOps)

Data Sharing & Governance

Automation & Integration

On-going Projects

ExtremeXP

- Experiment driven and user eXPerience oriented Analytics for eXtremely Precise outcomes and decisions
- 0 2023-2026
- Architecture modelling, Exploitation, Innovation and business modelling
- https://extremexp.eu/

CIPHER

- Cybersecurity Intelligence, Protection, and Holistic Enterprise Resilience
- 0 2025-2028
- Data Management, Exploitation, innovation and business model

Experiment driven and user eXPerience oriented

Analytics for eXtremely Precise outcomes and decisions

The ExtremeXP paradigm: Humans in the center of the AI processes for explainable, accurate, precise and fit for purpose insights

ExtremeXP Vision

To provide

accurate, precise, fit-for-purpose, and trustworthy data-driven insights

via

evaluating different complex analytic variants

considering

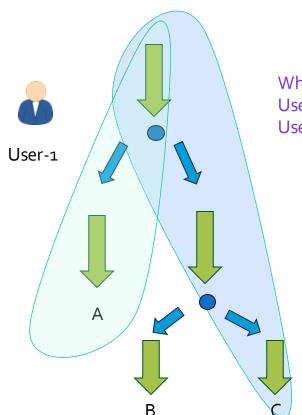
diverse user intents, constraints and feedback

Decision Making: The Data-driven impact

(ML-based)

Challenges:

- O Extreme data scale, low quality, different modalities, and ownership.
- O Need for accurate and precise analytics.
- O Trustworthiness is essential for decision adoption.
- O Human factor and purpose-fit.
- Solution: learn from experimenting different configurations, models, data sources/data sets, user profiles, user feedback, previous experiments



User 1: A
User 2: C

Example

Objective:

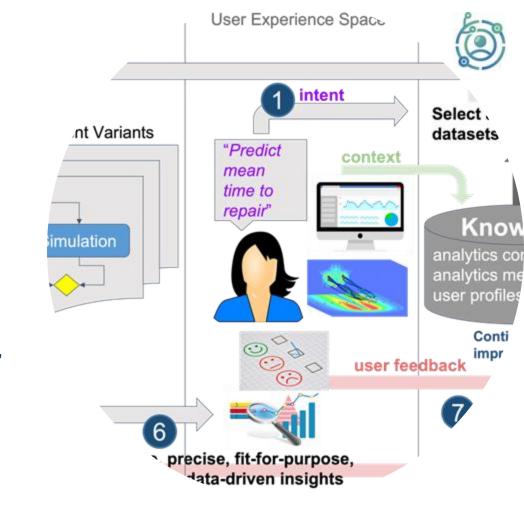
 Detect imminent failures in machine electrical and mechanical components using deep learning models

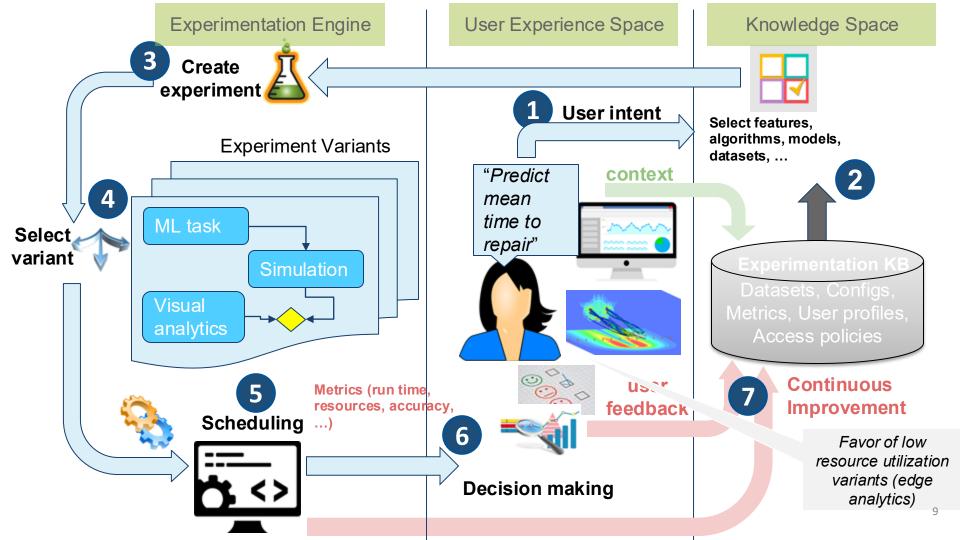
Methodology:

Analyze linear (backward-forward) movements of the machine axes

ExtremeXP Concept

- A human-centered approach to Al and data driven analytics
- Experimentation is the core concept for generating extremely accurate analytics
- Optimise the properties of a complex analytic process (e.g., accuracy, time-to-answer, specificity, recall, precision, resource utilization) by associating different user profiles to computation variants.

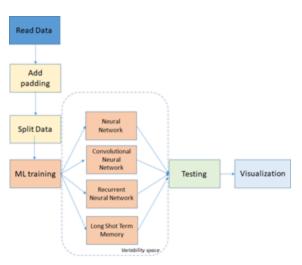




Experimentation approach to optimize complex analytics— Main Concepts

User Intent: Classify linear (backward-forward) movements of the machine axes as Electrical or Mechanical failures under the constraint of >95% accuracy

Experiment Design (Workflow)



Experiment Variants

- Task Variants
 - Neural Network (NN)
 - Convolutional Neural Network (CNN)
 - Recurrent Neural Network (RNN)
 - LSTM (Long Short Term Memory)
- Experimentation space per task
 - Model parameters
 - Number of layers
 - Number of nodes or units of each layer
 - Activation function
 - Training parameters
 - Number of epochs
 - Batch size

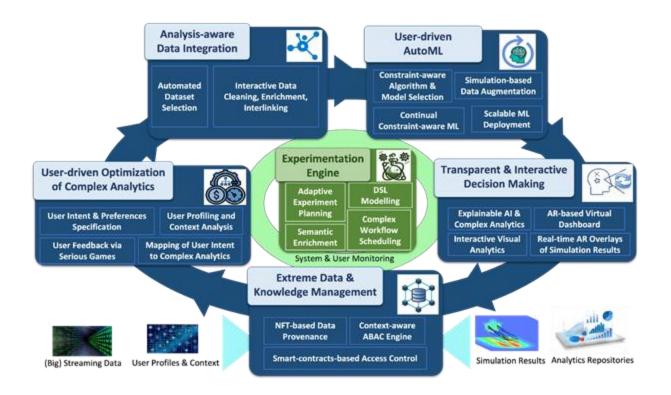
Generate and execute different workflow variants, based on the user intent (classify) and constraints, visualize data and metrics and gather user feedback

Yet another Auto-ML framework?

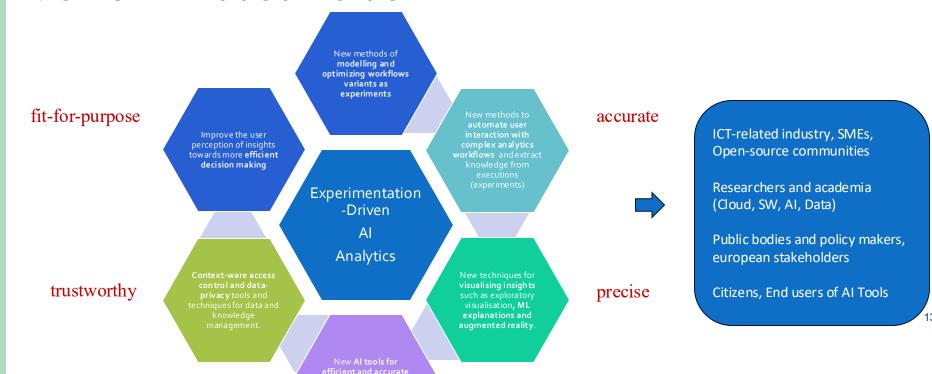
Three key characteristics

- User involvement at different phases of the experimentation
 - Human Tasks VS Automated Tasks
 - At the beginning (specify intents, user contraints, access control policies)
 - During the execution of an experiment (view results, cancel/prioritize/specify new workflows, but also provide expert feedback on the results of a workflow run)
 - At the end (help encode experiment results in knowledge base for future use)
- Experimentation considers **Al training pipelines**, but **also other types of workflows** (data analytics, simulation, visualization), including hybrid ones
- Our framework comprises strategies for automating the execution and evaluation of workflows, but also manages the knowledge created by experiments (to better inform future ones)

ExtremeXP Framework



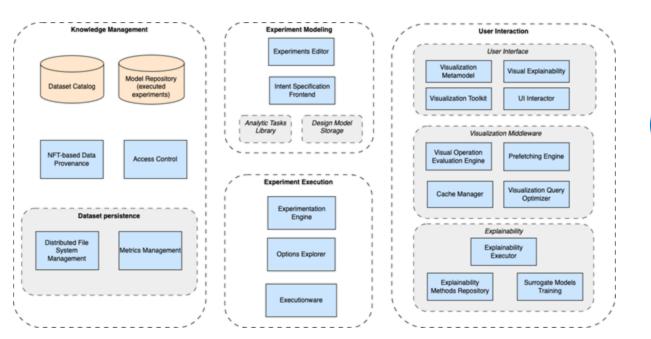
ExtremeXP Added Value



ExtremeXP Details

O1: Specification and semantics for modelling complex userexperience-driven analytics

• ExtremeXP Framework Architecture

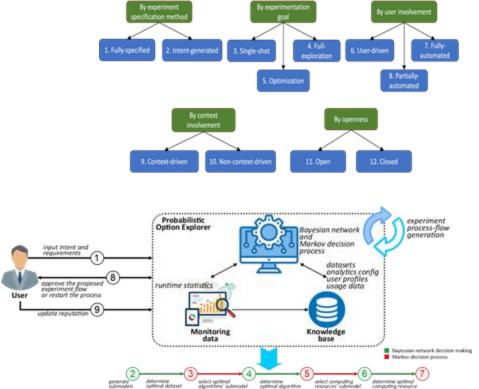


- Data engineer
- Domain expert
- Data creator

ExtremeXP Details

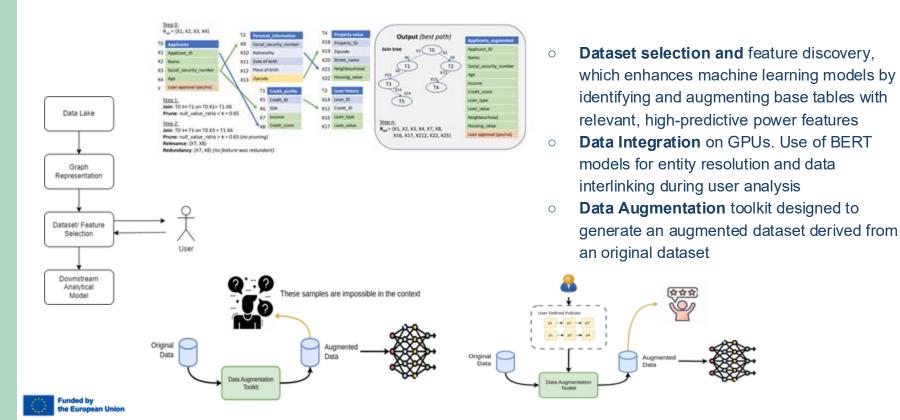
O1: Specification and semantics for modelling complex userexperience-driven analytics

- Foundational Concepts of ExtremeXP – Types of experiments
- Initial modelling and language foundations for experimentdriven analytics
- Traceability and trustworthiness for experiment-driven analytics
- Probabilistic Options Explorer for user centric experiment optimization

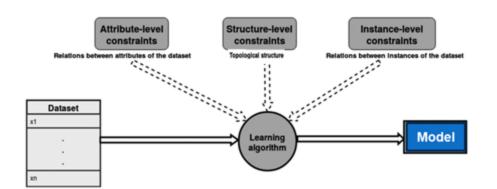


ExtremeXP details

Automated and scalable data management for complex analytics workflows



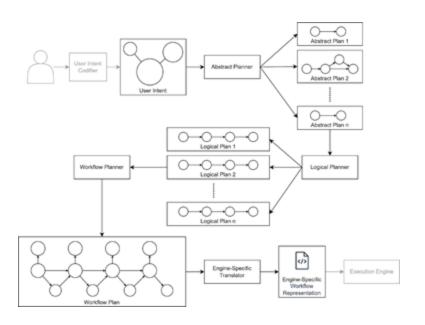
ExtremeXP details



- Clustering constraints resulting in a bi-objective loss function to produce a better clustering assignment
- Task-agnostic continual learning (TACL) to accommodate the incremental nature of the experimental problems covering the needs of the use cases.

ExtremeXP Details

O4: User-experience- and experiment-driven optimization of complex analytics

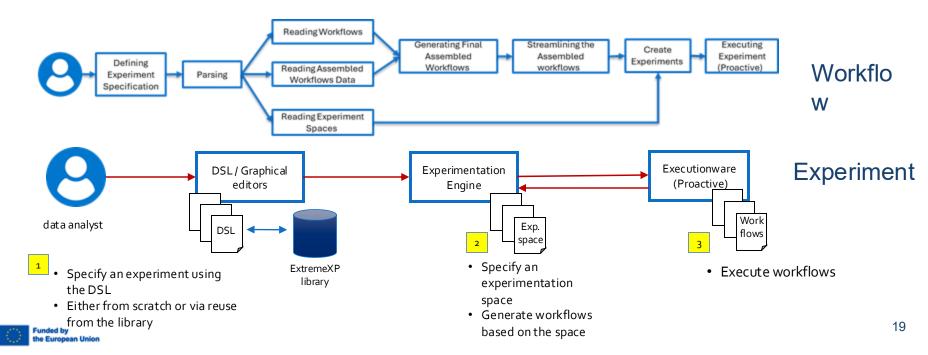


- Capturing user intents
 - user intents, preferences and constraints, powered by a knowledge graph.
- Mapping user intents to analytic workflows
 - generates all possible workflows based on a basic user intent

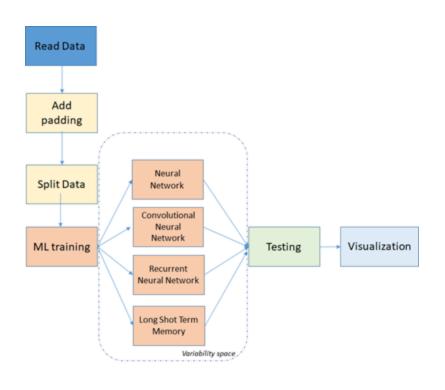
ExtremeXP Details

User-experience- and experiment-driven optimization of complex analytics

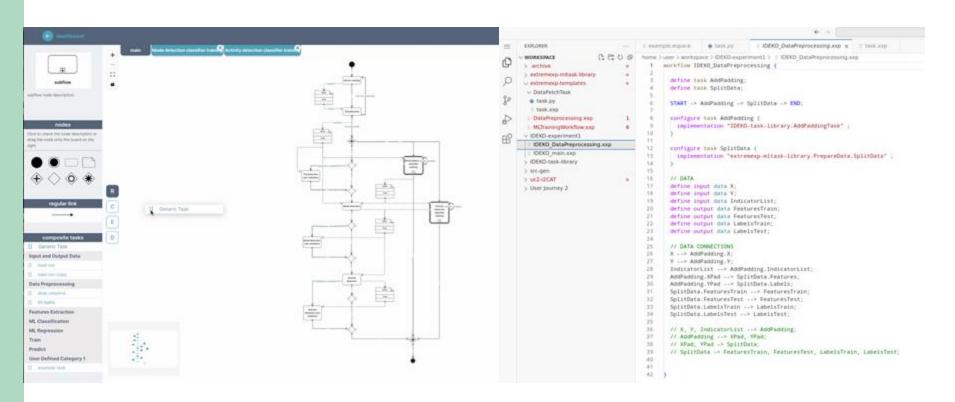
- Experimentation Engine
 - experiment planning
 - Tool for data monitoring of ExtremeXP engine metrics



Defining Experiments using Graphical Editor & Domain Specific Language

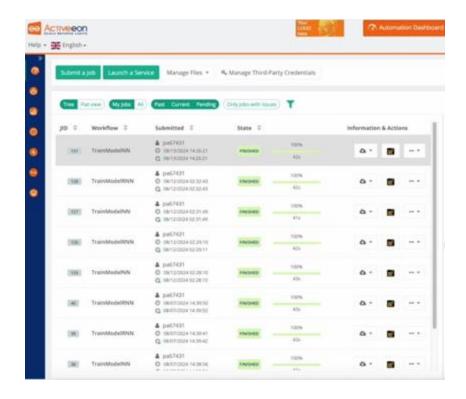


```
workflow IDEKO_V1 {
 define task ReadData;
 define task AddPadding;
 define task SplitData;
 define task TrainModel;
 START -> ReadData -> AddPadding -> SplitData -> TrainModel -> END;
 configure task ReadData {
   implementation "tasks/IDEKO/read_data.py";
   dependency "tasks/IDEKO/src/**";
 configure task AddPadding {
     implementation "tasks/IDEKO/add_padding.py";
     dependency "tasks/IDEKO/src/**";
 configure task SplitData {
     implementation "tasks/IDEKO/split_data.py";
     dependency "tasks/IDEKO/src/**";
 configure task TrainModel {
     dependency "tasks/IDEKO/src/**";
```

Execution in ProActive

- Job Scheduling &Workload Automation
- Scalability
- Easy integration



ExtremeXP details

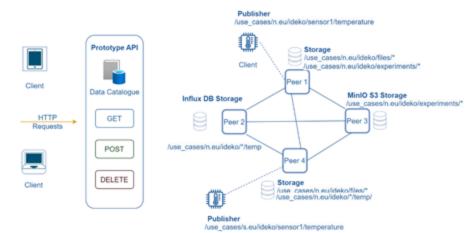


SW components

- Visualization of Experiment workflow
- Visualization of Experiment results
- Visualization of Explanations
- Explainability methods for pipeline variant, model and hyperparameter tuning
 - ALE, PDP plots
 - Counterfactuals, Influence Functions, Prototypes
- Gamification
- AR/VR Visualization
- Automatic specification of visualizations within workflows based on user intent

ExtremeXP Details

Extreme data access control and knowledge management



- Extend the Meta Data Schema (MDS) for capturing contextual information and creating meaningful access control policies
- Work on **context handlers** that will be developed as microservices for gathering contextual information necessary for evaluating incoming access requests.
- Integration of decentralized data management tools (like zenoh).
- Work on the access control mechanism using smart contract and token standards.
- Report in D5.2

ExtremeXP's Use Cases

Improvement of flash flood forecasting via Al

Increased Cybersecurity situation awareness for efficient **threat mitigation**

Flexible transportation analysis and visualization

Situational intelligence and decision making for Public Protection and Disaster Relief

Urban flash flood prediction

Overall Goal: Improve accuracy of flood prediction

How?

- #CAW1: Using AI to facilitate definition of input data.
 - #Expl: Improve buildings' definition
 - #Exp2: Introduction of structures (streets, sidewalks, ...)
 - o #Exp3: Improve DEM resolution
- #CAW2: Using a surrogate model to predict flood.

Challenges:

- Rapid events
- Urban areas with dense population and Infrastructures

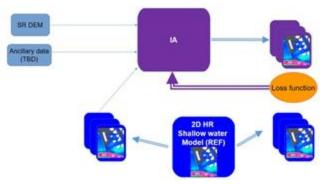
Flash flood events in Nîmes (3rd October 1988)

Area of Nîmes

- Particular location (near Meditarranean sea and backed by mountains blocking the warm water coming from the sea)
- Has experienced severe flash flood events (ex: 1988, 2002, 2005, 2014)
 caused by heavy rainfall



CAW1: Hydrodynamic model workflow with inputs improved by AI



CAW2: Surrogate model

Increased Cybersecurity Situation Awareness for Efficient Threat Mitigation

Maxime Compastié

Senior Researcher maxime.compastie@i2cat.net

Motivation & Objective

- **Blossoming landscape** of cyber-threats, more complex and analyse from defenders' perspective (e.g. SOC operators)
 - Constraints: Multi-modality & high-volumetry from typical data sources
 - Extensive reliance on human expertise & insights => Fatigue
- Current efforts for Cybersec community to instrument Al-techniques for threat detection
 - Focused on practical indicators (hash-value) => Lowly valuable as easily changeable by attacker
 - Our interest: identifying and detecting attacker behavior ... Hard! (cf. Pyramid of pain)
- Objective: Exploit ExtremeXP experiment-driven analytics capacity to identify threat actors' behavior
 - Valuable as difficult to changes => Improved technique identification
 - Opportunities for anlysing attack scenarios => Detection of incentive

=> How to convert the process of threat behavior elicitation into a set of data analytics experiments?

The Pyramid of Pain Tough TTPS Dorbect activities Tools Challenging Annoying **Host Artifacts Domain Names** Simple **IP Addresses** Easy 4 **Hash Values** Trivial

TTP (Tactics Techniques and Procedures) Based Threat hunting are based on adversary behavior.

- Descriptive in nature and define characterization on abnormal behaviour.
- · Pros: Needs research, Hard to implement
- Cons: Covers entire attack family depending on behaviour pattern, Specific tools and malware, command and control (C2) infrastructure, unique or rare TTPs

SIEM - Security Information and Event Management

The ExtremeXP Framework

Extreme XP a Sota framework to learn rules by performing experiments that evaluates different analytics variants based on on an <u>intent</u> (in NLP), <u>preference</u> and <u>constraint</u>.

ExtremeXP Components

We model <u>variability</u> using:

• **Intent**: The need of the end-user

Train a model to detect the Midori threat

• **Preferences:** The desiderata of the previous intent

An accuracy > .8 and reduce the number of FP

Constraints: A limitation or a restriction

The complexity needs to be bounded to log(n) and n²

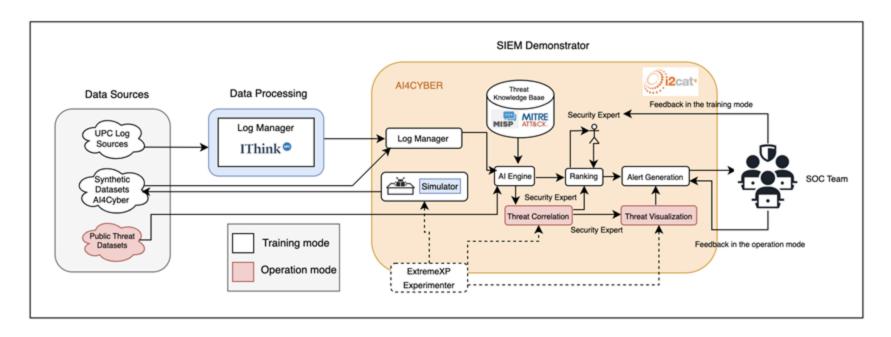
Challenges and expected contributions

Approach: Leverage behavior-based Security Analysis

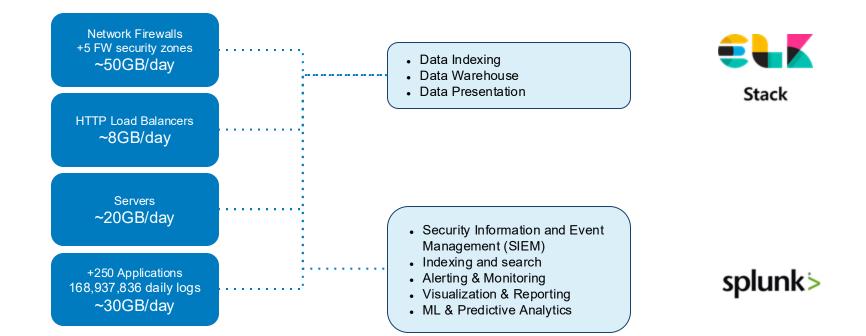
- Absence of sufficient dataset for specific attack techniques
 - <u>ExtremeXP solution:</u> Experiment generating a from supervised threat simulation dataset used for data augmentation
- Identification of adequate features relevant for threat detection
 - <u>ExtremeXP solution:</u> Training classification model as an evaluation, evaluation of their performance as an experiment
- Fit-for-purposeness of features to describe threat behaviors
 - <u>ExtremeXP solution:</u> Manned assessment of the quality of the explainations as experiment. Human-in-the-loop becomes Human-on-the-loop.

=> Implementation of different complex analytical workflows, run in an instance of ExtremeXP framework.

Use Case Architecture



Extreme Data from UPC



The Extreme-XP Approach

Expected Results

KPI	Target
Detection of multimodal threat techniques referenced by the MITRE Att&ck framework	10
False positives and negatives on threat techniques classification	< 10 %
Mean time to classification compared to traditional human techniques	< 30 seconds

ExtremeXP Project Factsheet

ExtremeXP (GA ID:101093164)

Call Topic: HORIZON-CL4-2022-DATA-01-01

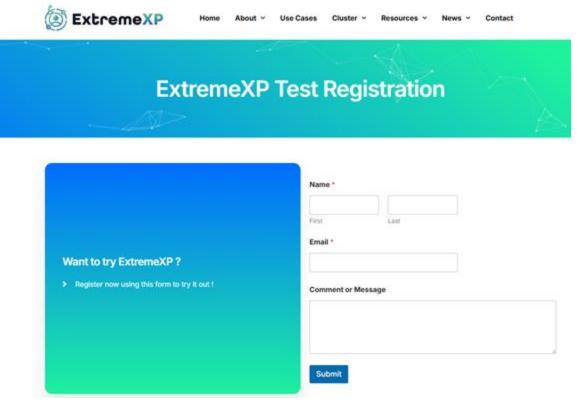
Budget € 10.359.472 (EU contribution: € 10.011.820)

Started in Jan 2023 - Duration: 36M

20 partners: 12 academic, 5 SMEs, 3 industrial

1	Athena Research Center (coordinator)	RTD
2	Activeeon	SME
3	Airbus Defense and Spaces SLC	LG
4	BitSparkles	SME
5	Bournemouth University	U
6	CS-Group	LG
7	Charles University of Prague	U
8	Deutsches Forschungszentrum für Künstliche Intelligenz	RTD
9	Fundacio Privada I2cat, Internet I Innovacio Digital A Catalunya	RTD
10	Institute of Communications and Computer Systems	RTD
11	IDEKO	RTD
12	INTERACTIVE4D	SME
13	INTRACOM TELECOM	LG
14	IThinkUPC	SME
15	MOBY X	SME
16	SINTEF	RTD
17	Technical University of Delft	U
18	University of Ljubljana	U
19	Universitat Politècnica De Catalunya	U
20	Vrije Universiteit Amsterdam	U

Try ExtremeXP : https://extremexp.eu/extremexp-test-registration/



THANK YOU

